On k-ary spanning trees of tournaments

نویسندگان

  • Xiaoyun Lu
  • Da-Wei Wang
  • Gerard J. Chang
  • In-Jen Lin
  • Chak-Kuen Wong
چکیده

It is well known that every tournament contains a Hamiltonian path, which can be restated as that every tournament contains a unary spanning tree. The purpose of this article is to study the general problem of whether a tournament contains a k-ary spanning tree. In particular, we prove that, for any fixed positive integer k, there exists a minimum number h(k) such that every tournament of order at least h(k) contains a k-ary spanning tree. The existence of a Hamiltonian path for any tournament is the same as h(1) = 1. We then show that h(2) = 4 and h(3) = 8. The values of h(k) remain unknown for k ≥ 4. c © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 167–176, 1999

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Branches in random recursive k-ary trees

In this paper, using generalized {polya} urn models we find the expected value of the size of a branch in recursive $k$-ary trees. We also find the expectation of the number of nodes of a given outdegree in a branch of such trees.

متن کامل

Parallel Generation of t-ary Trees

A parallel algorithm for generating t-ary tree sequences in reverse B-order is presented. The algorithm generates t-ary trees by 0-1 sequences, and each 0-1 sequences is generated in constant average time O(1). The algorithm is executed on a CREW SM SIMD model, and is adaptive and cost-optimal. Prior to the discussion of the parallel algorithm a new sequential generation with O(1) average time ...

متن کامل

On Heterochromatic Out-directed Spanning Trees in Tournaments

Given a tournament T , let h(T ) be the smallest integer k such that every arc-coloring of T with k or more colors produces at least one out-directed spanning tree of T with no pair of arcs with the same color. In this paper we give the exact value of h(T ).

متن کامل

Counting the number of spanning trees of graphs

A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.

متن کامل

On relation between the Kirchhoff index and number of spanning trees of graph

Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 30  شماره 

صفحات  -

تاریخ انتشار 1999